16 research outputs found

    Quantifying Shape of Star-Like Objects Using Shape Curves and A New Compactness Measure

    Get PDF
    Shape is an important indicator of the physical and chemical behavior of natural and engineered particulate materials (e.g., sediment, sand, rock, volcanic ash). It directly or indirectly affects numerous microscopic and macroscopic geologic, environmental and engineering processes. Due to the complex, highly irregular shapes found in particulate materials, there is a perennial need for quantitative shape descriptions. We developed a new characterization method (shape curve analysis) and a new quantitative measure (compactness, not the topological mathematical definition) by applying a fundamental principle that the geometric anisotropy of an object is a unique signature of its internal spatial distribution of matter. We show that this method is applicable to “star-like” particles, a broad mathematical definition of shape fulfilled by most natural and engineered particulate materials. This new method and measure are designed to be mathematically intermediate between simple parameters like sphericity and full 3D shape descriptions. For a “star-like” object discretized as a polyhedron made of surface planar elements, each shape curve describes the distribution of elemental surface area or volume. Using several thousand regular and highly irregular 3-D shape representations, built from model or real particles, we demonstrate that shape curves accurately encode geometric anisotropy by mapping surface area and volume information onto a pair of dimensionless 2-D curves. Each shape curve produces an intrinsic property (length of shape curve) that is used to describe a new definition of compactness, a property shown to be independent of translation, rotation, and scale. Compactness exhibits unique values for distinct shapes and is insensitive to changes in measurement resolution and noise. With increasing ability to rapidly capture digital representations of highly irregular 3-D shapes, this work provides a new quantitative shape measure for direct comparison of shape across classes of particulate materials

    High Frequency Concurrent Measurements in Watershed and Impaired Estuary Reveal Coupled DOC and Decoupled Nitrate Dynamics

    Get PDF
    Rapid changes in land use, pollution inputs, and climate are altering the quantity, timing and form of materials delivered from watersheds to estuaries. To better characterize these alterations simultaneous measurements of biogeochemical conditions in watersheds and estuaries over a range of times scales are needed. We examined the strength of watershed-estuarine biogeochemical coupling using data of in situ measurements of nitrate, terrestrial dissolved organic carbon (DOC) and chloride collected over a seven-month period in a nitrogen impaired estuary in the northeastern US. The watershed was observed exerting strong control over concentrations of terrestrially derived DOC in the estuary, attributable to relative homogeneity of watershed sources derived from forested land use combined with relatively conservative behavior in estuarine waters. Estuarine nitrate patterns were more complex, suggesting the influence of heterogeneous watershed distribution of non-point and point sources and high reactivity of nitrate in the estuary. Understanding estuarine biogeochemical patterns will be advanced through greater use of simultaneous sub-hourly measurements of inflows, salinity and water quality estuaries and their upstream watersheds

    The size range of bubbles that produce ash during explosive volcanic eruptions

    Get PDF
    Volcanic eruptions can produce ash particles with a range of sizes and morphologies. Here we morphologically distinguish two textural types: Simple (generally smaller) ash particles, where the observable surface displays a single measureable bubble because there is at most one vesicle imprint preserved on each facet of the particle; and complex ash particles, which display multiple vesicle imprints on their surfaces for measurement and may contain complete, unfragmented vesicles in their interiors. Digital elevation models from stereo-scanning electron microscopic images of complex ash particles from the 14 October 1974 sub-Plinian eruption of Volcán Fuego, Guatemala and the 18 May 1980 Plinian eruption of Mount St. Helens, Washington, U.S.A. reveal size distributions of bubbles that burst during magma fragmentation. Results were compared between these two well-characterized eruptions of different explosivities and magma compositions and indicate that bubble size distributions (BSDs) are bimodal, suggesting a minimum of two nucleation events during both eruptions. The larger size mode has a much lower bubble number density (BND) than the smaller size mode, yet these few larger bubbles represent the bulk of the total bubble volume. We infer that the larger bubbles reflect an earlier nucleation event (at depth within the conduit) with subsequent diffusive and decompressive bubble growth and possible coalescence during magma ascent, while the smaller bubbles reflect a relatively later nucleation event occurring closer in time to the point of fragmentation. Bubbles in the Mount St. Helens complex ash particles are generally smaller, but have a total number density roughly one order of magnitude higher, compared to the Fuego samples. Results demonstrate that because ash from explosive eruptions preserves the size of bubbles that nucleated in the magma, grew, and then burst during fragmentation, the analysis of the ash-sized component of tephra can provide insights into the spatial distribution of bubbles in the magma prior to fragmentation, enabling better parameterization of numerical eruption models and improved understanding of ash transport phenomena that result in pyroclastic volcanic hazards. Additionally, the fact that the ash-sized component of tephra preserves BSDs and BNDs consistent with those preserved in larger pyroclasts indicates that these values can be obtained in cases where only distal ash samples from particular eruptions are obtainable

    Sea-Level Rise Vulnerability Assessment of Coastal Resources in New Hampshire

    No full text

    Deployment of a large-scale soil monitoring geosensor network

    No full text
    We provide an overview of our practical experience with developing a distributed sensor network to monitor soil response to climate change and increase our understanding of the complex interactions of the surrounding ecological, biogeochemical and meteorological processes. The network consists of seven sites with unique topographical, and land-use characteristics, spread across a large area in the state of New Hampshire (US). The system was designed to measure soil moisture, soil CO2 efflux and make other ancillary measurements (air temperature, precipitation, wind speed etc.). The system design encompasses sensor and hardware selection, customization and the overcoming design constraints such as the need to operate a power hungry sensing system at remote locations with access only to solar power. The data we collect streams to the web as an outreach and teaching resource, provides input to ecosystem models used to predict how ecosystems in the region will respond to climate and land-use change, and directly monitors soil properties and processes in a changing climate

    Deployment of a Large-Scale Soil Moisture Geosensor Network- Experience and Lessons Learnt

    No full text
    We provide an overview of our practical experience with developing a distributed sensor network to monitor soil response to climate change and increase our understanding of the complex interactions of the surrounding ecological, biogeochemical and meteorological processes. The network consists of seven sites with unique topographical, and land-use characteristics, spread across a large area in the state of New Hampshire (US). The system was designed to measure soil moisture, soil CO2 efflux and make other ancillary measurements (air temperature, precipitation, wind speed etc.). The system design encompasses sensor and hardware selection, customization and the overcoming design constraints such as the need to operate a power hungry sensing system at remote locations with access only to solar power. The data we collect streams to the web as an outreach and teaching resource, provides input to ecosystem models used to predict how ecosystems in the region will respond to climate and land-use change, and directly monitors soil properties and processes in a changing climate

    A New 3D Method of Measuring Bubble Size Distributions from Vesicle Fragments Preserved On Surfaces of Volcanic Ash Particles

    Get PDF
    We have developed a novel method of measuring bubble size distributions from their remains expressed on the surfaces of volcanic ash particles. The morphology of the ash fragments retains a record of bubble size at the time of fragmentation in the curvature of the convex surfaces on the ash fragments. This curvature can be measured using stereo scanning electron microscopy (SSEM), and morphology can be represented using a digital elevation model (DEM) of ash particle surfaces. Due to the vagaries of the sensitivity of SSEM imagery to surface roughness, a three-point fit technique produces more robust results for curvature than a least-squares approach for curve-fitting of ellipsoids of revolution to ash surfaces. The method allows measurement of vesicles within a size range from one to over a million cubic microns. The inferred bubble size distributions so obtained can potentially provide valuable insights regarding magma dynamics and vesiculation that lead to the explosive eruptions that produce ash. An error analysis of the methodology indicates reasonably accurate reconstruction of bubble geometries and bubble size distributions (BSD). Accuracy is constrained primarily by the size of ash particles themselves since the mode of the BSD should be at least a standard deviation smaller than the dominant dimensions of the particles for robust results

    3-D reconstruction of ash vesicularity: Insights into the origin of ash-rich explosive eruptions

    No full text
    Explosive volcanic eruptions are characterized by highly variable degrees of magma fragmentation, even during a single eruptive event. The increasing amount of fine pyroclasts is often uncritically related to explosive magma–water interaction (i.e., hydromagmatic fragmentation). Here we report examination of two examples of major explosive eruptions from the Quaternary Vulsini Volcanic District (central Italy), in which the fine-grained nature of deposits, even in near-vent settings, indicates negligible effect of transport and implies the eruption of highly fragmented magmas. SEM morphoscopy of the juvenile products rules out extensive ash production due to hydromagmatic fragmentation. We apply a recently developed Stereo-Scanning Electron Microscopy (SSEM) technique (Proussevitch et al., 2011) to determine vesicularity features (e.g., bubble size distribution and bubble number density; hereafter BSD and BND, respectively) of ash particles. SSEM analysis provides new insights into magma vesiculation history and fragmentation mechanism leading to major ash-rich eruptions. We conclude that extensive ash production was related to essentially magmatic processes involving high degrees of decompression in shallow magma reservoirs

    Whole object surface area and volume of micro-scale 3-D models with “hidden surface”

    No full text
    Micro-scale 3D models, important components of many studies in science and engineering, are often used to determine morphological characteristics such as shape, surface area and volume. The application of techniques such as stereoscopic scanning electron microscopy on whole objects often results in \u27partial-view\u27 models with a portion of object not within the field of view thus not captured in the 3D model. The nature and extent of the surface not captured is dependent on the complex interaction of imaging system attributes (e.g. working distance, viewing angle) with object size, shape and morphology. As a result, any simplistic assumptions in estimating whole object surface area or volume can lead to significant errors. In this study, we report on a novel technique to estimate the physical fraction of an object captured in a partial-view 3D model of an otherwise whole object. This allows a more accurate estimate of surface area and volume. Using 3D models, we demonstrate the robustness of this method and the accuracy of surface area and volume estimates relative to true values

    La Correspondencia de España : diario universal de noticias: Año XIV Número 1064 - 1861 agosto 24

    No full text
    Explosive volcanic eruptions are characterized by highly variable degrees of magma fragmentation, even during a single eruptive event. The increasing amount of fine pyroclasts is often uncritically related to explosive magma–water interaction (i.e., hydromagmatic fragmentation). Here we report examination of two examples of major explosive eruptions from the Quaternary Vulsini Volcanic District (central Italy), in which the fine-grained nature of deposits, even in near-vent settings, indicates negligible effect of transport and implies the eruption of highly fragmented magmas. SEM morphoscopy of the juvenile products rules out extensive ash production due to hydromagmatic fragmentation. We apply a recently developed Stereo-Scanning Electron Microscopy (SSEM) technique (Proussevitch et al., 2011) to determine vesicularity features (e.g., bubble size distribution and bubble number density; hereafter BSD and BND, respectively) of ash particles. SSEM analysis provides new insights into magma vesiculation history and fragmentation mechanism leading to major ash-rich eruptions. We conclude that extensive ash production was related to essentially magmatic processes involving high degrees of decompression in shallow magma reservoirs
    corecore